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Abstract

Parameter-efficient fine-tuning (PEFT) methods have
gained widespread adoption in large language models
(LLMs) due to their efficiency and efficacy. Expanding
on this concept, our research explores the application of
PEFT methods to vision-language models, with a partic-
ular emphasis on CLIP. We introduce a comprehensive
evaluation framework that examines these methods across
diverse backbones and datasets. The study reveals that
while PEFT methods show strong performance in stan-
dard classification tasks, they face limitations in more com-
plex, multimodal scenarios. Through an empirical ex-
amination of prompt tuning and adapter techniques, we
highlight their potential to alleviate data collection chal-
lenges in data-scarce environments. The study also under-
scores the need for enhanced PEFT approaches for detailed
scene understanding and decision-making tasks. We open-
sourced our code at https://github.com/Andy-
LZH/peft4clip

1. Introduction
In recent years, the machine learning community has seen
remarkable advances, especially in large language models
(LLMs). Models like ChatGPT, including GPT-3.5 and
GPT-4, have set new standards in NLP. They’re known for
their ability to follow human instructions and learn from
feedback, as shown in studies [41, 42]. This progress has
led to the development of open-source LLMs like LLaMA,
PaLM, Alpaca, and Vicuna, diversifying NLP research
[11, 37, 50, 59].

Similarly, in computer vision, the Visual Transformer
[14] has sparked a shift towards combining language and
images for a deeper understanding of visual contexts.
Models like CLIP, trained on text-image pairs, are leading
the integration of vision-language. However, they face
challenges like catastrophic forgetting and aligning lan-

guage with vision in downstream tasks, prompting the need
for new fine-tuning methods .[18, 25, 45, 49, 57].

The NLP field has extensively explored challenges for
fine-tuning large models, particularly with large models
like GPT-3 and its billions of parameters. Research also
points out the high costs and risks of catastrophic forgetting
of full-modal fine-tuning. In response, there is growing
interest in parameter-efficient tuning methods like prompt
tuning and adapters [8, 20, 21, 58].

Our paper seeks to fill a critical gap in existing research
by conducting a comprehensive analysis of fine-tuning
methods for Vision-Language models, like CLIP. We
specifically focus on their performance in downstream
tasks where data collection is challenging, offering new
insights into their adaptability in these contexts.

Key Contributions of Our Study:
1. We offer a detailed review of fine-tuning methods,

including prompt engineering, tuning, adapters, and
LoRA-like techniques.

2. Our evaluation framework shows that current PEFT
methods are effective in data-scarce domains and high-
lights the need for advanced methods for complex scene
understanding and decision-making tasks.

2. PEFT in Vision-Language Model
2.1. Preliminary

CLIP (Contrastive Language - Image Pre-training) in-
tegrates vision and language processing through a dual
encoder framework, that is, Vision Encoder and Text
Encoder, using a contrastive learning objective [45]. This
framework aligns image and text representations in a
shared embedding space, enabling efficient cross-modal
understanding.

Image Encoder in CLIP adopts a ResNet [18] or a
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Vision Transformer (ViT) [14] architecture. With ResNet,
CLIP leverages deep layers and residual connections
for robust image feature extraction. Alternatively, ViT
treats images as sequences of flattened patches, applying
self-attention to capture global dependencies.

Language Encoder in CLIP uses a transformer archi-
tecture [13, 51], optimized to process textual input such
as captions and descriptions, encoding them in the same
embedding space as the Vision Encoder.

Formalizing CLIP is trained to minimize the distance
between embeddings of matching image-text pairs and
maximize it for nonmatching pairs, formalized as:

• Vision Encoder: f(I) where I is an input image. The
function f processes I and outputs a feature vector in a
shared embedding space, facilitating alignment with tex-
tual data.

• Language Encoder: g(T ) where T is a text input. The
encoder g transforms T into a corresponding vector in the
same embedding space.

• Let S(I, T ) represent the cosine similarity score between
the image embedding and the text embedding, calculated
as the dot product of f(I) and g(T ).

• The contrast loss function, L, is designed to optimize this
similarity metric across a batch of image-text pairs.

This architecture and training methodology enable CLIP
to achieve state-of-the-art performance in tasks such as
zero-shot image classification, demonstrating its effective-
ness in cross-modal learning. Furthermore, employing a
simple linear-probe approach, which mounts a linear clas-
sifier head to the vision encoder f(I), achieved compara-
ble results on datasets like ImageNet [47] to its supervised
learning counterparts like ResNet [18], EfficientNet [49],
and ViT [14] [45]. However, the original paper on CLIP did
not introduce a method for few-shot fine tuning, and pre-
vious research [15, 28] has shown that full model fine tun-
ing can lead to poor performance in the Out-Of-Distribution
task, underscoring the need for new fine-tuning methods to
enhance CLIP’s adaptability.

2.2. Prompt Engineering

Although not a direct application of parameter-efficient
fine-tuning, we felt it is important to also discuss prompt
engineering in the context. Prompt Engineering has gained
substantial popularity in both the NLP and CV community
since its intuitive approach and great performance, and
its importance has been furthered with the widespread
adoption of the LLM tools.

Prompt engineering in NLP involves a strategic input

structure to guide large language models (LLMs) such
as GPT-2 [44], GPT-3[8], GPT-3.5[42] and GPT-4[41].
This field has developed a variety of methodologies and
best practices. Among them, Instruction Prompting and
In-Context Learning are notable. Instruction Prompting
is used to provide clear and explicit instructions to LLM,
improving the precision and relevance of their responses
[40]. This method has been used effectively in models such
as GPT-3.5[42] and GPT-4[41], which are designed to fol-
low instructions and integrate human feedback efficiently.
In-context Learning is another crucial technique in
prompt engineering. It enables LLMs to infer and generate
responses based on the context provided within the prompt
itself. This method is particularly effective for tasks where
models need to interpret or continue a given narrative or
pattern, allowing them to produce contextually coherent
and relevant output. Furthermore, Channel-Of-Thought
(CoT) prompting allows LLMs to address problems
through intermediate reasoning steps, closely resembling
human thought processes. Prompt Engineering largely
improved the performance of LLMs, and were also very
well stuided by the community; hence on top of what we
summarized here, we gently introduce the reader to read
those phrases. [9, 17, 26, 35, 40].

Prompt engineering in CLIP involves prompt engi-
neering in the parts of the language and vision, and while
the language inherits a similar method in the LLM part,
vision was relatively less studied. The importance of
prompts(text supervision) has been widely explored in the
original CLIP’s paper, which with simply a text template of
(a photo of a [CLS]) allows the model to adapt to different
task sets without being bounded to a fixed class size[45].
Although vision prompt engineering were less studied, we
found some recent publications that share really exciting re-
sults. Researchers have shown that by simply drawing a red
circle on the image where interested, CLIP achived SOTA in
expression composition and localization subtasks[48]. We
also encourage our readers to read these recent work in
prompt engineering in Vision-Language Models[5, 17]

2.3. Prompt Tuning

Due to the significant time required for crafting prompts in
Prompt Engineering, prompt tuning has become an essential
technique in Parameter Efficient Fine Tuning. Originally
focused on improving NLP, prompt tuning is now important
in both the NLP and CV communities.[22, 30, 32, 60]

NLP The original concept of prompt tuning involves
modifying the input prompt to enhance model performance.
This approach can be categorized into hard prompt tuning,
where discrete input tokens are rearranged for better output,
and soft prompt tuning, where input token embeddings are
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concatenated with trainable tensors. Soft prompt tuning is
optimized through backpropagation and is more parameter
efficient than full model fine-tuning, although it may
sometimes offer slightly reduced modeling performance
[30]. An advanced form of prompt tuning is Prefix tuning,
which extends the idea by adding trainable tensors to
each transformer block, not just the input embeddings.
This method integrates soft prompt embeddings via fully
connected layers, enhancing the flexibility and adaptability
of the model. Prefix tuning has been shown to achieve
modeling performance comparable to full model fine tuning
in all layers, requiring only training of a fraction (0.1%)
of the parameters. In several instances, Prefix Tuning
has even outperformed full-layer fine tuning, particularly
in scenarios involving smaller target datasets, as it helps
reduce overfitting [1, 3, 32].

CV/Vision-Language Prompt tuning’s wide application
in NLP has influenced its adoption in CV. Visual Prompt
Tuning (VPT) [22], which takes inspiration from soft
prompt tuning [30] and prefix tuning [32], applies these
concepts to visual tasks. VPT-Shallow integrates trainable
tensors with image patches and position embeddings at the
input stage, while VPT-Deep involves adding trainable
tensors to every transformer block, enhancing performance
in complex visual tasks by allowing for more detailed
adjustments within transformer layers. CoOP[60] adapts
the principles of soft prompt tuning to the vision-language
domain. It focuses on optimizing contextual tokens
specifically for image recognition tasks, thus improving
the model’s ability to interpret and analyze visual data in
conjunction with textual information. Unified Prompt
Tuning (UPT)[24, 54] which created a concatenated shared
trainable tensor in both image and text encoder, introduced
an interesting regime in Vision-Language prompt tuning
which we would encourage readers to explore.

2.4. Adapters

In LLMs, adapters provide an efficient alternative to full
model fine-tuning. By adding lightweight layers within the
transformer architecture, these modules fine-tune the model
for specific tasks while keeping the majority of the model’s
parameters frozen. This approach significantly reduces the
computational cost and the time required for training.[21]

LoRA (Low-Rank Adaptation) is a prominent example
of an adapter in NLP. LoRA modifies the self-attention and
feedforward layers of a transformer model by introducing
low-rank matrices. These matrices are trained to adjust the
model’s behavior, providing task-specific adaptation while
maintaining a low computational footprint. This method
has been effective in adapting LLMs for various NLP tasks

with minimal training costs [20].

Just as adapters streamline the fine-tuning process for
language models, they are also transforming how we com-
bine text and images in Vision-Language models. The
CLIP-Adapter is a key example. Specifically, the CLIP-
Adapter adds small, targeted adjustments to CLIP’s exist-
ing set-up with extra feature learned from CLIP’s output
combining with CLIP’s original output, allowing it to bet-
ter select adaptability to new tasks. This process does not
require much extra computing power and can significantly
improve how the model performs on tasks that need insights
from both what it sees and what it reads [15].

3. Experiments
Despite the extensive exploration of Parameter-Efficient
Fine-Tuning (PEFT) methods, a significant gap in the cur-
rent literature is the predominant focus on ImageNet-related
datasets. While these datasets have been instrumental in
advancing our understanding of PEFT methods, they offer
a limited view of potential applications, especially in the
context of vision-language models.

Most existing studies have concentrated on a set of
11 standard datasets[54, 60], primarily oriented around
ImageNet[47]. This concentration raises concerns about
the generalizability of these methods across a broader
spectrum of tasks and domains. There is a pressing need for
a more systematic empirical study that explores a diverse
range of adaptation benchmarks. Such a study is crucial
to unlocking the true potential of vision language models,
extending their impact beyond traditional image-focused
tasks to other fields.

Our experiment aims to fill this gap by conducting
a comprehensive empirical analysis in various data sets
that are not exclusively connected to ImageNet[47].
This approach will enable a deeper understanding of the
adaptability and effectiveness of PEFT methods in various
scenarios. We believe that such a systematic study will be
crucial in guiding future adaptations of vision-language
models, contributing significantly to their applicability in a
wide range of real-world applications.

3.1. Dataset

We follow VPT[22] to run our experiments on the VTAB-
1K benchmark[55] which Incorporated 19 different tasks
ranging from 3 categories: • NATURAL which are most
similar to what on ImageNet, • SPECIALIZED which
encompass medical or satellite imagery1, and • STRUC-

1Our report temporarily omits results from the Retinopathy dataset [2]
due to maintenance issues encountered with our framework.
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Figure 1. An overview of our evaluation pipelines

TURED which encompass complex scene understanding
tasks like estimating distance, attitude, elevation, and game
strategies. See Table.1 for a detailed attribute of the dataset.
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• NATURAL • SPECIALIZED • STRUCTURED

Table 1. Datasets in VTAB-1K[55].

3.2. Evaluation Pipelines

Refer to Figure 1 for an overview of our evaluation pipeline.
This figure illustrates the specific optimization components
utilized in each PEFT method and outlines our approach to
test the robustness of adaptability.

Methods Our study focuses primarily on parameter-
efficient fine-tuning methods related to image processing,
selected on the basis of time and resource constraints. The
main PEFT methods we examine are VPT-Shallow [22],

VPT-Deep [22], and CLIP-Adapter [15].

Backbone In line with recent findings on the impact
of the CLIP pre-training data scale [9], we extend our
experiments to include new backbones from MetaCLIP
[9], trained on both 400M and 2.5B datasets. Given the
demonstrated success of these models in previous studies
[15, 22, 60] and due to page limitations, we report results
exclusively from the MetaCLIP-B16-2.5B backbone. For
a comprehensive analysis of different backbones, please
refer to our Supplementary material.

Inference At the output stage, we employ two types
of evaluation, following CLIP [45]’s original design: the
Linear Probe and Zero-Shot Prediction. The two output
types in our pipeline are: ’Head’, utilizing only visual
features, and ’Contrastive Prediction’, which leverages both
textual and visual features. While VPT primarily used a
linear probe approach due to its focus on addressing PEFT
issues in Visual Transformers [14], which lack a textual
component. The CLIP-Adapter was originally designed
for CLIP; however, we also explore the robustness of
CLIP-Adapter with only visual features in our experiments.
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Figure 2. Comparative Analysis of Average Accuracy Across VTAB-1K[55] Subsets (Natural, Structured, and Specialized) and Overall
Performance Versus Training Shots per Class for Various PEFT Methods using the MetaCLIP-B16-2.5B Backbone[53]

Formally, we defined our evluation method as fol-
lows: Let M be a set of PEFT methods where M =
{VPT-Shallow[22],VPT-Deep[22],CLIP-Adapter[15]}.
Let O be the set of output types where O =
{Vision (head),Vision-Language (Contrastive Prediction)}.
Let S be the set of number of shots used in training
where S = {2, 4, 8, 16}. Then, we define the function

f : M × O × S → R, where f(m, o, s) yields the
performance metric.

3.3. Hyperparameter Tuning

Hyperparameter tuning is a critical stage in model opti-
mization, aiming to find the most effective model settings.
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PEFT Methods Grid Search

CLIP-Adapter[15] VPT-Shallow, VPT-Deep[22]

Optimizer AdamW [36] SGD[46]
Optimizer momentum - 0.9
base lr range {0.001, 0.0001, 0.0005, 0.005} {50, 25, 10, 5, 1}
Weight decay range {0.01, 0.001, 0.0001, 0} {0.01, 0.001, 0.0001, 0}
Num Tokens - {10-200}
alpha α 0.5 -
Total epochs ViT-B[45, 56]{10-50}, ViT-L[45]{5-30}

Table 2. Hyperparameters used for different method categories, adapted from [22]

We implemented a grid search method, systematically
evaluating combinations of hyperparameters to ascertain
the optimal configuration for our models.

In Visual Prompt Tuning introduced ’Num Token’ as
an additional hyperparameter, which represents the count
of trainable tokens for the visual prompts. We followed
Prompt Tuning’s implementation details in choose Num
Tokens [22] to run our experiments.

For CLIP-Adapter[15], the hyperparameter ’alpha’ plays
a crucial role, as mathematically defined by:

f(I)′ = α ∗ fadapter(f(I)) + (1 − α) ∗ f(I) where
fadapter denotes the output embedding from CLIP-Adapter,
f(I) represents the original knowledge (embedding) from
CLIP’s image encoder, and f(I ′) is the resulting embed-
ding after tuning. The hyperparameter α ranges between 0
and 1, balancing the weight of the adapted parameters Θ′

corresponding to the weights of fadapter with the original pa-
rameters Θ of the original knowledge of CLIP f(I), thus
controlling the degree of adaptation.

Guided by the loss function used in CLIP and the hy-
perparameters outlined in Table 2, our tuning process also
took inspiration from previously successful methods, where
we adapt from VPT[22] in grid searching optimal hyper-
parameter.

3.4. Our Results

Following our evaluation pipeline, we conducted zero-shot
and few-shot experiments on VTAB [55] as shown in Fig. 2

3.4.1 Observation

Across the different subsets of the VTAB-1K
benchmark[55] (natural, structured, and specialized),
we observe a distinct pattern in the performance of meth-
ods using Head-only prediction versus those employing
Contrastive Prediction.

In the Head-only setup, VPT-Shallow[22] and CLIP-
Adapter[15] show a steady increase in performance as the
number of labeled training examples per class increases.
This trend is indicative of the effectiveness of Head-only
prediction in scenarios where visual features predominantly
drive the task. VPT-Deep[22], while also benefiting
from more labeled data, appears to produce more modest
improvements, suggesting that the deeper integration of
trainable tensors may not always translate to a linear
performance increase with additional training examples.

Contrastive prediction, which uses text and images
together, shows a surprising result with VPT-Shallow[22]
and VPT-Deep[22]: their accuracy drops as we increase
the number of training examples per class. This isn’t well
explained yet, but we think it might be because the model
is fitting too closely to the specific training examples,
especially in how input embedding from vision side
were structured. This suggests that we need better PEFT
methods that can handle text and images together without
over-fitting.

The CLIP-Adapter[15]’s performance using Contrastive
Prediction notably surpasses its Head-only configuration,
underscoring the importance of aligning visual and textual
representations, especially when adapting preexisting
models like CLIP to new tasks.

Interestingly, across all methods and subsets, zero-shot
CLIP serves as a baseline, with its performance being
outpaced by most fine-tuned approaches. This reinforces
the value of fine-tuning in specialized domains, where the
zero-shot capabilities of models like CLIP may not fully
capture the nuances required for optimal performance.

3.4.2 Implications of PEFT in Diverse Domains

From our observation, we concluded that current PEFT
methods are quite effective for standard classification
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tasks across different domains, showing promise especially
where data is scarce. However, these methods seem to
underperform in tasks involving complex scene under-
standing and decision making. This indicates a need for
improved PEFT techniques that can handle the nuances of
such complex scenarios more effectively.

• Natural: PEFT methods, including Zero-Shot
learning, have shown remarkable effectiveness in natural
data-rich environments. Such methods could lower barriers
for researchers in domains where gathering large datasets
is straightforward or can be synthetically generated.

• Specialized: In more specialized settings, PEFT
methods like VPT-Deep have nearly achieved an 80%
accuracy rate using only visual features, a noteworthy
improvement over baseline methods such as Sup-Rotation-
100% [55]. The CLIP Adapter, which uses both visual
and textual information, also demonstrates comparable
performance. This indicates that even with a domain
gap, a slight amount of fine-tuning can significantly boost
accuracy. This trend is particularly evident in domains such
as medical and satellite imaging, suggesting that adapters
or VPT can effectively learn new weights to emphasize
relevant features for classification tasks. We encourage
researchers, especially those in data-scarce fields such as
medicine, to explore the use of PEFT with vision-language
models such as CLIP for their classification challenges [15].

• Structured: Despite the success in natural and spe-
cialized tasks, PEFT methods have struggled in structured
domains. Datasets that require complex scene understand-
ing, such as estimating distances in RGB images without
LiDAR as in KITTI [16], or categorizing objects in a
simulated environment, as in DMLab [6], have proven
challenging. Yet, with vision-language models showing
promise in VQA problems [33, 34], there is potential in
exploiting CLIP’s dual-modality for complex reasoning.
We call upon the community to direct more focus towards
PEFT methods in challenging domains that require intricate
scene understanding and decision-making.

4. Conclusion
Our emprical study on Parameter Efficient Fine Tuning
(PEFT) methods for Vision-Language models, particularly
focusing on the CLIP model, underscores the potential
and challenges in this rapidly evolving field. We have
demonstrated that while current state-of-the-art methods
exhibit robust performance in standard image classification
tasks, particularly those akin to ImageNet datasets, they
exhibit limitations when applied to more complex scene
understanding and decision-making tasks.

The exploration of various PEFT techniques, includ-
ing prompt tuning, adapters, and LoRA-like methods,
reveals that these approaches can significantly mitigate the
challenges of data scarcity. This is particularly pertinent
for domains where collecting large, annotated datasets
is impractical or unfeasible. Our findings suggest that
the application of PEFT methods can enable effective
model adaptation with minimal additional training, thereby
reducing computational costs and time.

However, the results also highlight a critical gap in
the capability of these methods in dealing with complex
multimodal scenarios. This gap points to the need for
more advanced PEFT strategies that can better integrate
and balance textual and visual information for nuanced
scene comprehension. Such advancements could pave the
way for more generalized and versatile applications of
vision-language models across a broader spectrum of tasks,
beyond standard image classifications.

4.1. Limitations

Our empirical study, while extensive in its scope and
depth, encountered certain limitations that are important
to acknowledge. Firstly, our ambition to test a wide array
of backbones, including OpenAI’s ViT-B32, ViT-B16,
and MetaCLIP’s B32-400M, B16-400M, B32-2.5B, and
B16-2.5B, meant that the sheer volume of tests and datasets
we aimed to cover was substantial. This ambition, while
valuable for comprehensive analysis, posed practical
challenges.[45, 56]

Due to constraints in computational resources and peo-
ple power, our study focused on a limited set of parameter-
efficient fine-tuning (PEFT) methods. While this focus
allowed a detailed exploration of specific techniques, it
also meant that other potentially valuable methods, such as
LoRA, CoOP, UPT, and other notable methods, were not
included in this phase of our research.[20]

4.2. Future Directions

To address these limitations, we are planning follow-up
works and supplemental studies. These will expand our
analysis to include a broader range of PEFT methods, such
as LoRA and advanced prompt engineering techniques.
By doing so, we aim to provide a more comprehensive
understanding of the effectiveness of these methods across
different model architectures and datasets.

Furthermore, we intend to publish detailed ablation
studies on the various backbones used in our research.
This additional analysis will be included in supplementary
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materials, offering deeper insights into the performance
and characteristics of each backbone. These efforts
are aligned with our goal to continually contribute to
the field and support the machine learning commu-
nity with more thorough and diverse research findings.
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